久久久久久久久久久91_精品国产一区二区三区成人影院_中文字幕第2页_国产精品成人一区二区三区_韩日成人av_欧美久久一区

當前位置: 首頁 精選范文 電子電源技術(shù)范文

電子電源技術(shù)精選(五篇)

發(fā)布時間:2023-09-26 08:27:18

序言:作為思想的載體和知識的探索者,寫作是一種獨特的藝術(shù),我們?yōu)槟鷾蕚淞瞬煌L格的5篇電子電源技術(shù),期待它們能激發(fā)您的靈感。

電子電源技術(shù)

篇1

1.電力電子技術(shù)的發(fā)展

現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進入現(xiàn)代電力電子時代。

1.1整流器時代

大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內(nèi)燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應(yīng)用得以很大發(fā)展。當時國內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導(dǎo)體廠家就是那時的產(chǎn)物。

1.2逆變器時代

七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)取_@時的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。

1.3變頻器時代

進入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細加工技術(shù)和高壓大電流技術(shù)有機結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。

2.現(xiàn)代電力電子的應(yīng)用領(lǐng)域

2.1計算機高效率綠色電源

高速發(fā)展的計算機技術(shù)帶領(lǐng)人類進入了信息社會,同時也促進了電源技術(shù)的迅速發(fā)展。八十年代,計算機全面采用了開關(guān)電源,率先完成計算機電源換代。接著開關(guān)電源技術(shù)相繼進人了電子、電器設(shè)備領(lǐng)域。

計算機技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關(guān)的設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關(guān)電源而言,電源自身要消耗50瓦的能源。

2.2通信用高頻開關(guān)電源

通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50-100kHz范圍內(nèi),實現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源),同時還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓撲結(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。

2.4不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實現(xiàn)。

現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

2.5變頻器電源

變頻器電源主要用于交流電機的變頻調(diào)速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動交流異步電動機實現(xiàn)無級調(diào)速。

國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點。預(yù)計到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進一步發(fā)展方向。

2.6高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。

2.7大功率開關(guān)型高壓直流電源

大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機和CT機等大型設(shè)備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

國內(nèi)對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8電力有源濾波器

傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側(cè)三次諧波含量可達(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。

電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

2.9分布式開關(guān)電源供電系統(tǒng)

分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)模控制集成電路作基本部件,利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓撲結(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點,論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴大。

分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應(yīng)加熱電源、電動機驅(qū)動電源等領(lǐng)域也有廣闊的應(yīng)用前景。

3.高頻開關(guān)電源的發(fā)展趨勢

在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開關(guān)電源技術(shù)均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關(guān)電源技術(shù),其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關(guān)電源技術(shù),通過開關(guān)電源改變用電頻率,從而達到近于理想的負載匹配和驅(qū)動控制。高頻開關(guān)電源技術(shù),更是各種大功率開關(guān)電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。

3.1高頻化

理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為“開關(guān)變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術(shù)含量的價值。

3.2模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實質(zhì)上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關(guān)器件的驅(qū)動保護電路也裝到功率模塊中去,構(gòu)成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設(shè)計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應(yīng)力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設(shè)計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺新型的開關(guān)電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關(guān)電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術(shù),所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時間。

3.3數(shù)字化

在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號來設(shè)計和工作的。在

六、七十年代,電力電子技術(shù)完全是建立在模擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術(shù)日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測遙調(diào),也便于自診斷、容錯等技術(shù)的植入。所以,在

八、九十年代,對于各類電路和系統(tǒng)的設(shè)計來說,模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術(shù)的知識,但是對于智能化的開關(guān)電源,需要用計算機控制時,數(shù)字化技術(shù)就離不開了。

3.4綠色化

電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設(shè)備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀批量生產(chǎn)各種綠色開關(guān)電源產(chǎn)品奠定了基礎(chǔ)。

篇2

當前,電力電子作為節(jié)能、節(jié)才、自動化、智能化、機電一體化的基礎(chǔ),正朝著應(yīng)用技術(shù)高頻化、硬件結(jié)構(gòu)模塊化、產(chǎn)品性能綠色化的方向發(fā)展。在不遠的將來,電力電子技術(shù)將使電源技術(shù)更加成熟、經(jīng)濟、實用,實現(xiàn)高效率和高品質(zhì)用電相結(jié)合。

1.電力電子技術(shù)的發(fā)展

現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進入現(xiàn)代電力電子時代。

1.1整流器時代

大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內(nèi)燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應(yīng)用得以很大發(fā)展。當時國內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導(dǎo)體廠家就是那時的產(chǎn)物。

1.2逆變器時代

七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)取_@時的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。

1.3變頻器時代

進入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細加工技術(shù)和高壓大電流技術(shù)有機結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。

2.現(xiàn)代電力電子的應(yīng)用領(lǐng)域

2.1計算機高效率綠色電源

高速發(fā)展的計算機技術(shù)帶領(lǐng)人類進入了信息社會,同時也促進了電源技術(shù)的迅速發(fā)展。八十年代,計算機全面采用了開關(guān)電源,率先完成計算機電源換代。接著開關(guān)電源技術(shù)相繼進人了電子、電器設(shè)備領(lǐng)域。

計算機技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關(guān)的設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關(guān)電源而言,電源自身要消耗50瓦的能源。

2.2通信用高頻開關(guān)電源

通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50-100kHz范圍內(nèi),實現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源),同時還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓撲結(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。

2.4不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實現(xiàn)。

現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

2.5變頻器電源

變頻器電源主要用于交流電機的變頻調(diào)速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動交流異步電動機實現(xiàn)無級調(diào)速。

國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點。預(yù)計到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進一步發(fā)展方向。

2.6高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。

2.7大功率開關(guān)型高壓直流電源

大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機和CT機等大型設(shè)備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

國內(nèi)對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8電力有源濾波器

傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側(cè)三次諧波含量可達(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。

電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

2.9分布式開關(guān)電源供電系統(tǒng)

分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)模控制集成電路作基本部件,利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓撲結(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點,論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴大。

分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應(yīng)加熱電源、電動機驅(qū)動電源等領(lǐng)域也有廣闊的應(yīng)用前景。

3.高頻開關(guān)電源的發(fā)展趨勢

在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開關(guān)電源技術(shù)均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關(guān)電源技術(shù),其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關(guān)電源技術(shù),通過開關(guān)電源改變用電頻率,從而達到近于理想的負載匹配和驅(qū)動控制。高頻開關(guān)電源技術(shù),更是各種大功率開關(guān)電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。

3.1高頻化

理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為“開關(guān)變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術(shù)含量的價值。

3.2模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實質(zhì)上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關(guān)器件的驅(qū)動保護電路也裝到功率模塊中去,構(gòu)成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設(shè)計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應(yīng)力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設(shè)計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺新型的開關(guān)電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關(guān)電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術(shù),所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時間。

3.3數(shù)字化

在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號來設(shè)計和工作的。在六、七十年代,電力電子技術(shù)完全是建立在模擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術(shù)日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測遙調(diào),也便于自診斷、容錯等技術(shù)的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設(shè)計來說,模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術(shù)的知識,但是對于智能化的開關(guān)電源,需要用計算機控制時,數(shù)字化技術(shù)就離不開了。

3.4綠色化

電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設(shè)備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀批量生產(chǎn)各種綠色開關(guān)電源產(chǎn)品奠定了基礎(chǔ)。

篇3

首先,直擊雷在經(jīng)過接閃器之后泄放入地,促使地網(wǎng)電位提高,通過相應(yīng)的線路侵入電子設(shè)備中,進而導(dǎo)致其出現(xiàn)地電位反擊的現(xiàn)象。其次,在雷電流沿著引下線進入地面的時候,就會在周邊形成一定的磁場,就會導(dǎo)致其附近的金屬物體上出現(xiàn)感應(yīng)電流,進而出現(xiàn)過電壓的情況。最后,當室外的通信線與電源線受到直擊雷或者感應(yīng)雷之后,出現(xiàn)的雷電流或者過電壓就會沿著相應(yīng)的線路入侵,進而傳輸?shù)诫娮釉O(shè)備上,對其產(chǎn)生一定的破壞。

2防雷技術(shù)的三級保護

在對通信電源及其電子設(shè)備進行防雷保護的時候,根據(jù)《建筑物防雷設(shè)計規(guī)范》GB50057-2010標準中有關(guān)雷擊概率計算環(huán)境參數(shù)的選用,以及根據(jù)《通信局防雷與接地工程設(shè)計規(guī)范》YD5098-2005標準中關(guān)于波能量換算計算公式,可以對電源系統(tǒng)低壓側(cè)采取不同級別的防雷保護,通常情況下將其分為一級、二級、三級三個保護等級,在實際工作中,按照不同的保護等級選擇具有適合電壓保護水平以及額定通流容量的電源避雷器,并且確保避雷器具有一定耐雷擊的性能。從原則上而言,每一級交流電源之間的連接導(dǎo)線都不可以大于15米,在實際安裝過程中,一定要嚴格按照相關(guān)設(shè)計要求開展施工,加強相應(yīng)的防雷保護措施。

2.1一級保護

通常情況下,一級保護主要針對的就是直擊雷,防止其沿著相應(yīng)的線路侵入室內(nèi)對相應(yīng)的電子設(shè)備產(chǎn)生一定的破壞,主要就是泄放雷能量。作為一級保護技術(shù),一定要選用25kA/線、10/350s的額定通流容量,對從總電源前端侵入的高壓脈沖進行吸收,避免建筑物內(nèi)大型電子設(shè)備或者內(nèi)部感應(yīng)電磁脈沖出現(xiàn)瞬間的尖鋒脈沖或者高壓,進而對配電系統(tǒng)產(chǎn)生一定的影響。一級保護作為配電系統(tǒng)防雷的總保護措施,對配電系統(tǒng)中電子設(shè)備免受雷擊起到了非常重要的保護措施。

2.2二級保護

根據(jù)防雷設(shè)計的機理與雷區(qū)劃分的內(nèi)容,可以在電源柜上設(shè)置一個三相防雷器,選用20kA/線、8/20s的額定通流容量,進而對從配電前端侵入的高壓脈沖進行吸收,同時對內(nèi)部的過電壓也要進行相應(yīng)的吸收,除此之外,對電磁脈沖產(chǎn)生的高壓瞬時脈沖進行相應(yīng)的吸收。

2.3直流電源保護

在直流電源柜里設(shè)置一個直流電源防雷器,選用10kA/線、8/20s的額定通流容量,視其為設(shè)備的精細防護,對內(nèi)部的過電壓進行一定的吸收,同時也要吸收電磁脈沖產(chǎn)生的高壓瞬時脈沖,進而降低配電前端傳來的雷電流,使其達到電子設(shè)備可以承受的安全范圍以下,確保直流電源的安全。

3結(jié)束語

篇4

當前,電力電子作為節(jié)能、節(jié)才、自動化、智能化、機電一體化的基礎(chǔ),正朝著應(yīng)用技術(shù)高頻化、硬件結(jié)構(gòu)模塊化、產(chǎn)品性能綠色化的方向發(fā)展。在不遠的將來,電力電子技術(shù)將使電源技術(shù)更加成熟、經(jīng) 濟、實用,實現(xiàn)高效率和高品質(zhì)用電相結(jié)合。

1. 電力電子技術(shù)的發(fā)展

現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進入現(xiàn)代電力電子時代。

1.1 整流器時代

大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內(nèi)燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應(yīng)用得以很大發(fā)展。當時國內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導(dǎo)體廠家就是那時的產(chǎn)物。

1.2 逆變器時代

七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)取_@時的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。

1.3 變頻器時代

進入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細加工技術(shù)和高壓大電流技術(shù)有機結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。

2. 現(xiàn)代電力電子的應(yīng)用領(lǐng)域

2.1 計算機高效率綠色電源

高速發(fā)展的計算機技術(shù)帶領(lǐng)人類進入了信息社會,同時也促進了電源技術(shù)的迅速發(fā)展。八十年代,計算機全面采用了開關(guān)電源,率先完成計算機電源換代。接著開關(guān)電源技術(shù)相繼進人了電子、電器設(shè)備領(lǐng)域。

計算機技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關(guān)的設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關(guān)電源而言,電源自身要消耗50瓦的能源。

2.2 通信用高頻開關(guān)電源

通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50-100kHz范圍內(nèi),實現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3 直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源), 同時還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓撲結(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。

2.4 不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,

另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實現(xiàn)。 現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

2.5 變頻器電源

變頻器電源主要用于交流電機的變頻調(diào)速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器, 將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動交流異步電動機實現(xiàn)無級調(diào)速。

國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點。預(yù)計到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進一步發(fā)展方向。

2.6 高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合, 整流濾波后成為穩(wěn)定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。

2.7 大功率開關(guān)型高壓直流電源

大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機和CT機等大型設(shè)備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

國內(nèi)對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8 電力有源濾波器

傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側(cè)三次諧波含量可達(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。

電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流; (2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

2.9 分布式開關(guān)電源供電系統(tǒng)

分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)模控制集成電路作基本部件,利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓撲結(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點,論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴大。

分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應(yīng)加熱電源、電動機驅(qū)動電源等領(lǐng)域也有廣闊的應(yīng)用前景。

3. 高頻開關(guān)電源的發(fā)展趨勢

在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開關(guān)電源技術(shù)均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關(guān)電源技術(shù),其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關(guān)電源技術(shù),通過開關(guān)電源改變用電頻率,從而達到近于理想的負載匹配和驅(qū)動控制。高頻開關(guān)電源技術(shù),更是各種大功率開關(guān)電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。

3.1 高頻化

理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計的 5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合 閘用等各種直流電源也可以根據(jù)這一原理進行改造, 成為“開關(guān)變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術(shù)含量的價值。

3.2 模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實質(zhì)上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關(guān)器件的驅(qū)動保護電路也裝到功率模塊中去,構(gòu)成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設(shè)計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應(yīng)力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊,它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、 機械方面的設(shè)計,達到優(yōu)化完美的境地。它類似于微

電子中的用戶專用集成電路。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺新型的開關(guān)電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關(guān)電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術(shù),所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量, 在有限的器件容量的情況下滿足了大電流輸出的要求, 而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時間。 3.3 數(shù)字化

在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號來設(shè)計和工作的。在六、七十年代,電力電子技術(shù)完全是建立在模擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術(shù)日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測遙調(diào),也便于自診斷、容錯等技術(shù)的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設(shè)計來說,模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC) 問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術(shù)的知識,但是對于智能化的開關(guān)電源,需要用計算機控制時,數(shù)字化技術(shù)就離不開了。

3.4 綠色化

電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電, 這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設(shè)備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀批量生產(chǎn)各種綠色開關(guān)電源產(chǎn)品奠定了基礎(chǔ)。

篇5

當前,電力電子作為節(jié)能、節(jié)才、自動化、智能化、機電一體化的基礎(chǔ),正朝著應(yīng)用技術(shù)高頻化、硬件結(jié)構(gòu)模塊化、產(chǎn)品性能綠色化的方向發(fā)展。在不遠的將來,電力電子技術(shù)將使電源技術(shù)更加成熟、經(jīng)濟、實用,實現(xiàn)高效率和高品質(zhì)用電相結(jié)合。

1.電力電子技術(shù)的發(fā)展

現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進入現(xiàn)代電力電子時代。

1.1整流器時代

大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內(nèi)燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應(yīng)用得以很大發(fā)展。當時國內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導(dǎo)體廠家就是那時的產(chǎn)物。

1.2逆變器時代

七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)取_@時的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。

1.3變頻器時代

進入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細加工技術(shù)和高壓大電流技術(shù)有機結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。

2.現(xiàn)代電力電子的應(yīng)用領(lǐng)域

2.1計算機高效率綠色電源

高速發(fā)展的計算機技術(shù)帶領(lǐng)人類進入了信息社會,同時也促進了電源技術(shù)的迅速發(fā)展。八十年代,計算機全面采用了開關(guān)電源,率先完成計算機電源換代。接著開關(guān)電源技術(shù)相繼進人了電子、電器設(shè)備領(lǐng)域。

計算機技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關(guān)的設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關(guān)電源而言,電源自身要消耗50瓦的能源。

2.2通信用高頻開關(guān)電源

通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50-100kHz范圍內(nèi),實現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源),同時還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓撲結(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。

2.4不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實現(xiàn)。

現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

2.5變頻器電源

變頻器電源主要用于交流電機的變頻調(diào)速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動交流異步電動機實現(xiàn)無級調(diào)速。

國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點。預(yù)計到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進一步發(fā)展方向。

2.6高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。

2.7大功率開關(guān)型高壓直流電源

大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機和CT機等大型設(shè)備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

國內(nèi)對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8電力有源濾波器

傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側(cè)三次諧波含量可達(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。

電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

2.9分布式開關(guān)電源供電系統(tǒng)

分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)模控制集成電路作基本部件,利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓撲結(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點,論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴大。

分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應(yīng)加熱電源、電動機驅(qū)動電源等領(lǐng)域也有廣闊的應(yīng)用前景。

3.高頻開關(guān)電源的發(fā)展趨勢

在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開關(guān)電源技術(shù)均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關(guān)電源技術(shù),其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關(guān)電源技術(shù),通過開關(guān)電源改變用電頻率,從而達到近于理想的負載匹配和驅(qū)動控制。高頻開關(guān)電源技術(shù),更是各種大功率開關(guān)電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。

3.1高頻化

理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為“開關(guān)變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術(shù)含量的價值。

3.2模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實質(zhì)上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關(guān)器件的驅(qū)動保護電路也裝到功率模塊中去,構(gòu)成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設(shè)計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應(yīng)力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設(shè)計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺新型的開關(guān)電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關(guān)電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術(shù),所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時間。

3.3數(shù)字化

在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號來設(shè)計和工作的。在六、七十年代,電力電子技術(shù)完全是建立在模擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術(shù)日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測遙調(diào),也便于自診斷、容錯等技術(shù)的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設(shè)計來說,模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術(shù)的知識,但是對于智能化的開關(guān)電源,需要用計算機控制時,數(shù)字化技術(shù)就離不開了。

3.4綠色化

電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設(shè)備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀批量生產(chǎn)各種綠色開關(guān)電源產(chǎn)品奠定了基礎(chǔ)。

主站蜘蛛池模板: 91精品国产综合久久婷婷香蕉 | 日韩三区 | 国产欧美高清在线观看 | 亚洲精品乱码久久久久久 | 欧美一级欧美三级在线观看 | 国产精品69毛片高清亚洲 | 色av综合在线 | 亚洲国产一区二区三区在线观看 | 热re99久久精品国产99热 | 国产一区二区三区免费在线观看 | 天堂资源网 | 国产精品久久久久久久久久 | 一区二区三区播放 | 国产18av | 国产精品二区一区 | 中文字幕在线资源 | 免费爱爱视频 | 国产韩国精品一区二区三区 | 成人免费av | 亚洲精品综合中文字幕 | 日韩1区3区4区第一页 | 亚洲国产伊人 | 中文字幕在线视频一区 | 久久999免费视频 | 中文字幕a视频 | 国产一级片播放 | 成人深夜免费视频 | 91精品国产一区二区三区蜜臀 | 亚洲成人一区二区 | 色官网 | 欧美精品免费在线观看 | 最近免费中文字幕大全免费版视频 | 亚洲精品中文字幕在线观看 | 精品视频一区二区三区 | 亚洲一区二区三区四区五区中文 | 99精品一区二区三区 | 国产精品毛片在线 | 日韩中文字幕在线视频 | 日韩精品一区二区三区四区 | 国产剧情一区二区 | 久久亚洲精品视频 |